Für die Bibliothek sind als Geschenke eingegangen:

- 66. Polytechnisches Notizblatt, Jahrg. 1880. Nos 11 u. 12. (Vom Herausgeber.)
- 90. Wiadomości farmaceutyczne, Tom VII, Nos 4 u. 5. (Vom Herausgeber).
- 1034. Sprawozdenie z czynności towarzystwa farmaceutycznego Warszawskiego oraz z obrotu Kasy wsparcia podupadłych farmaceutów za rok 1879. Warszawa 1880.
- 1035. Häusermann, Carl. Ueber die Ausbildung der technischen Chemiker. Sep.-Abdr. (Verf.)
- 1036. Fischer, Ferd. Ueber die Untersuchung von Schmierölen. Sep.-Abdr. (Verf.)
- 359. Alexejeff, P. Organische Chemie. 2te. Auflage. Kiew 1880. In russischer Sprache. (Verf.)

Der Schriftführer:

Der Vorsitzende:

A. Pinner.

A. W. Hofmann.

Mittheilungen.

310. H. F. Wiebe: Ueber die specifische Wärme und die Ausdehnung der starren Elemente.

(Eingegangen am 23. Juni; verlesen in der Sitzung von Hrn. A. Pinner.)

Die einem starren Körper zugeführte Wärme theilt sich im Allgemeinen in zwei Theile; ein Theil derselben geht in den Körper als Wärme über, während der andere Theil durch Ueberwindung der inneren Cohäsionskräfte in Form von Arbeit latent wird. Es wird hierbei von dem Antheil, der zur Ueberwindung des auf dem Körper lastenden Atmosphärendruckes bei der Volumenvermehrung verbraucht wird, als quantitativ unerheblich abgesehen.

1) Die gesammte Wärmemenge ist gemäss dem Dulong-Petitschen Gesetz dem Atomgewicht umgekehrt proportional, zeigt aber, für sich betrachtet, keine besonderen Regelmässigkeiten. Eine solche tritt aber hervor, wenigstens für mehrere chemische Familien, sobald man die ganze, dem Körper bis zur Schmelztemperatur zugeführte Wärme in Betracht zieht. Die nachfolgende Tabelle enthält die Daten nach den neuesten Forschungen zusammengestellt; die Bedeutung der einzelnen Columnen ist direkt aus der Ueberschrift ersichtlich.

Es ergiebt sich aus der letzten Columne, dass der Gesammtwärmeinhalt der Körper beim Schmelzpunkt im festen Zustande für die Glieder derselben Gruppe in den meisten Fällen in nahezu einfachen Verhältnissen steht, so in der 1., 2., 4., 6., 7. und 8. Familie; die 3. und 5., sowie die Hauptgruppe der 6. Familie lassen keine ein-

Nummer der chemischen Familie	Element	Spec. Wärme für 1 Centi- grad c	Schmelzpunkt t	c. (275+t)	Einfache Verhältnisse
	Li	0.941	180	428	8.54 \
	Na	0.293	95.6	109	2.55
1.	к	0.166	62.5	56	1.56
	Cu	0.0952	1054	126	9.14
	Ag	0.0570	954	70	5.14
	Au	0.0324	1035	43	3.14
	Mg	0.250	750	256	_
	Zn	0.0955	412	66	2.33
2.	Cd	0.0567	315	33	1.33
	Hg	0.0319	40	7.5	
3.	Al	0.214	850	241	-
	Ga	0.0790	30.5	24.1	
	In	0.0570	176	26	_
	Tl	0.0335	290	19	
	Sn	0.0562	235	29	_
4.	Pb	0.0314	334	19	_
	Pgelb	0.189	44.5	60	2.30
	P roth	0.170	255	90	3.30
5 .	As	0.0814	500 ?	63 ?	
	Sb	0.0508	430	36	-
	Bi	0.0308	264	ι7	_
6.	s	0.178	113.6	69	_
	Se	0.0762	217	37.5	
	Те	0.0474	489	36	_
	Cr	0.100	1700 ?	197.5 ?	3.66
	Мо	0.0722	1600 ?	135 ?	2.68
	w	0.0334	1700 ?	66 3	1.66
7.	Mп	0.122	1600 ?	229 ?	_
	Br	0.0843	- 7	22.6	1.23
	J	0.0541	107	21	1.21

Nummer der chemischen Familie	Element	Spec. Wärme für 1 Centi- grad c	Schmelzpunkt t	c · (275 + t)	Einfache Verhältnisse
· · · · · · · · · · · · · · · · · · ·	Fe	0.114	1600 ?	214 ?	5.43
	Ru	0.0611	1800 ?	127 ?	3.42
	Os	0.0311	2500	86	2.43
l	Co	0.107	1500 ?	190 ?	5.38
8.	Rh	0.0580	2000 ?	132 ?	(3.44)
	lr	0.0326	1950	72.5	2.36
	Ni	0.108	1450 ?	² 186 ?	5.37
l.	Pd	0.0593	1500	105	3.35
	Pt	0.0325	1775	66.5	2.33

fachen Verhältnisse erkennen. Vermuthungsweise lässt sich aussprechen, dass die latente Schmelzwärme die Ursache sei, weshalb bei diesen Körpern die einfachen Verhältnisse nicht sichtbar werden. Zu bemerken ist noch, dass die specifische Wärme mit der Temperatur variirt, dagegen jedoch ist daran zu erinnern, dass die Veränderung nahezu proportional der Temperatur erfolgt und übrigens auch nicht sehr beträchtlich ist. Es ist noch hervorzuheben, dass die Wärmemengen für die beiden Modificationen des Phosphors in dem einfachen Verhältnisse 2:3 stehen.

2) Die Temperaturerhöhung des Körpers ist mit Ausdehnung verbunden, die derselben entgegenwirkende Kraft bezeichnet man als Cohäsionskraft, deren Grundursache voraussichtlich die Affinität der Atome ist ¹). Ich habe früher gezeigt ²), wie sich zwischen dieser molekularen Cohäsionskraft und der specifischen Wärme eine Beziehung finden lasse und erlaube mir jetzt dieselbe in einer erweiterten Fassung vorzulegen.

Die Gesammtwärmemenge, welche der Gewichtseinheit des Körpers vom absoluten Nullpunkt bis zum Schmelzpunkt zugeführt wird, steht in einem annähernd constanten Verhältniss zu dem umgekehrten Werth des mit dem Atomgewicht multiplicirten, mittleren Ausdehnungscoöfficienten. Es ist hierbei gleich hervorzuheben, dass dieser einfachen Regel alle untersuchten Elemente folgen, die regulär krystallisiren, während die meisten der in andern Systemen krystallisirenden Elemente erheblich davon abweichen. Bei den letzteren repräsentirt offenbar die Volumenvermehrung, die übrigens ja auch nicht nach allen Richtungen gleich erfolgt, nicht die ganze, geleistete, innere

¹⁾ Lothar Meyer, Mod. Theorien, 3. Aufl., p. 222 und 282.

²⁾ Diese Berichte XII, 788.

Arbeit; es hat vielleicht ausser der Entfernung der Moleküle von einander auch noch eine Drehung derselben um eine Achse stattgefunden.

In der nachfolgenden Tabelle sind in der I. Columne nach den Elementen die in der vorigen Tabelle enthaltenen Produkte c. (275 + t) aufgeführt, die II. Columne enthält den mittleren, cubischen Ausdeh-

	I.	II.	III.	ıv.
Element	c . (275 + t)	α	$\frac{1}{\mathbf{a} \cdot \alpha}$	$\frac{\frac{1}{a \cdot \alpha}}{c \cdot (275 + t)}$
Cu -	126	0.00005094	310	2.5
Ag	70	0.00005805	160	2.3
Au	43	0.00004353	117	2.7
Mg	256	0.00008286	503	2.0
Zn	66	0.00008715	177	2.7
Cd	33	0.00009306	96	2.9
Al	241	0.00007008	525	2.2
In	26	0.00013782	64	2.5
Т1	19	0.00009405	52	2.8
Sn	29	0.00006807	124	(4.3)
Pb	19	0.00008844	55	2.9
As	63	0.00001806	73 9	(11.7)
Sb	36	0.00003474	236	(6.6)
Bi	17	0.00004122	115	(6.8)
S	69	0.00020244	154	2.3
Se	37.5	0.00011376	113	3.0
Те	36	0.00005196	150	(4.2)
J	21	0.000235	34	(1.6)
Fe	214	0.00003624	494	2.3
Co	190	0.00003732	457	2.4
Ni	186	0.00003858	442	2.4
Ru	127	0.00002973	324	2.6
Rh	132	0.00002574	373	2.8
Pđ	105	0.00003567	263	2.5
Os	86	0.00002037	247	2.9
Ir	72.5	0.00002124	239	3.3
Pt	66.5	0.00002721	186	2.8
C	1494	0.00002388	3490	2.3
Si	540	0.00002340	1526	2.8
	1	1	l	I

nungscoëfficienten nach den Ergebnissen der Fizeau'schen Messungen, die III. den umgekehrten Werth der auf die Gewichtseinheit bezogenen, absoluten Ausdehnung des Atoms, und die IV. Columne endlich den Quotienten III/II.

Bezüglich der beiden zuletzt aufgeführten Elemente, Kohlenstoff (in Form von Graphit) und Silicium, ist zu bemerken, dass deren zu Grunde gelegten Schmelzpunkte nach der Pictet'schen Regel von Lothar Meyer hypothetisch bestimmt sind. (Vergl. darüber Lothar Meyer, Moderne Theorien, 4. Aufl., p. 157.)

Das Mittel der Constanten beträgt unter Ausschluss der eingeklammerten Werthe 2.6 (wahrscheinlicher Fehler ± 0.04). Es muss noch darauf aufmerksam gemacht werden, dass die Abweichungen von dem Mittelwerthe zum Theil Erklärung finden in dem Umstande, dass der Rechnung der mittlere Ausdehnungscoöfficient zwischen 0 und 100° zu Grunde gelegt worden ist, während eigentlich der — aber noch unbekannte — mittlere Coöfficient zwischen dem absoluten Nullpunkt und der Schmelztemperatur genommen werden sollte.

Mittels der gegebenen Relation ist man im Stande die unbekannte Ausdehnung für Elemente, wenigstens annäherungsweise, zu berechnen, man hat einfach

$$\alpha = \frac{1}{2.6 \cdot a \cdot c \cdot (t + 275)}$$

Da auch das Pictet'sche Gesetz 1) ein Gleiches gestattet, so dürfte eine Vergleichung der aus beiden Regeln folgenden Werthe der Ausdehnung von Interesse sein.

Element	Ausdehnungscoöfficient für 1 Centigrad			
	nach Pictet's Formel	nach meiner Formel		
Li	0.000130	0.000128		
Na	0.000127	0.000153		
K	0.000113	0.000176		

Die Differenz wird im Aufsteigen zu den höheren Gliedern stärker und die wirklichen Werthe liegen vielleicht zwischen beiden Reihen. Berlin, im Juni 1880.

¹⁾ R. Pictet, Comptes rendus 1879, T. 88, p. 855.